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Numerical Stability of the Halley-Iteration for
the Solution of a System of Nonlinear Equations

By Annie A. M. Cuyt*

Abstract. Let F: R? > R? and x* a simple root in R? of the system of nonlinear equations
F(x) = 0.

Abstract Pade approximants (APA) and abstract Rational approximants (ARA) for the
operator F have been introduced in [2] and [3]. The adjective “abstract” refers to the use of
abstract polynomials [S] for the construction of the rational operators.

The APA and ARA have been used for the solution of a system of nonlinear equations in
[4]). Of particular interest was the following third order iterative procedure:

a?

X; =x;,+ —
i+1 i — ’
a;, + 1 F/'Fa?

with F; the Ist Fréchet-derivative of F in x;, a; = —F;~'F, the Newton-correction where
F, = F(x;), F the 2nd Fréchet-derivative of F in x; where F"a? is the bilinear operator F;’
evaluated in (a;, g;), and componentwise multiplication and division in R?. For ¢ = 1 this
technique is known as the Halley-iteration [6, p. 91]. In this paper the numerical stability [7]
of the Halley-iteration for the case ¢ > 1 is investigated and illustrated by a numerical
example.

1. Numerical Stability of Iterations. We consider the numerical solution of the
equation
(1) F(x) =0
with F: R? - R?: x — F(x), abstract analytic in 0 [5]. Assume that (1) has a simple
root x*.

We briefly repeat the definition of condition-number given by Wozniakowski [7].
The condition-number should measure the sensitivity of the solution (output) with
respect to changes in the data (input). We assume that F depends parametrically on
a vector d € R?, called data vector

F(x) = F(x; d),

and instead of the exact value F(x; d) we only have the computed value fl( F(x; d))
in ¢ digit floating-point binary arithmetic. At best we can expect that fl(F(x; d)) is
the exact value of a slightly perturbed operator at slightly perturbed data
2) fI(F(x; d)) = (I + AF)F(x + Ax; d + Ad),
where / is the ¢ X ¢ unit-matrix and

lAx|| < Cipolix|l,  [|Ad]| < Cyplld],

|AF|| < Cp (AF a g X g matrix),
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for constants C,, C,, C; (only depending on the dimensions of the problem) and
with p = 27 the relative computer precision [8]. By introducing the Landau-symbol
O, we could also write
Ax = O(p), Ad = O(p), AF = O(p),
where the constants in the Landau-notation depend on x, d and the dimensions.
We will always, for a given F, define the data vector so that (2) holds and so that
the condition number (see Definition 1.1) is minimized. Let fl(d) denote the ¢ digit
binary representation of the vector 4 in floating-point arithmetic
Ifl(d) — d|| < Cplld||, ie.fl(d) —d = O(p).
Since d is represented by fl(d), we solve in fact F(x; fl(d)) = 0 instead of F(x) = 0,
independent of the method used to solve (1). Let F, and F; denote the partial
Fréchet-derivatives of F, respectively with respect to x and 4.
Now F(x; fl(d)) = 0 has a root x* in the neighborhood of x* and X* — x* =
O(p) if ¢ is sufficiently large; thus,

X% — x* = _F/(x*; )" F)(x*; d)(fi(d) — d)
+ higher order terms in x* — x*and fi(d) — d
= ~F/(x*; d)"'Fy(x*; d)(fl(d) — d) + 0(p?),
where the constant in the Landau-notation depends on x*, d and F.

For x* # 0: [|x* — x*||/|lx*|| < |[Fi(x*; d)"'Fj(x*; d)||Colld||/[|x*|| + O(p?.

Definition 1.1. Cond(F; d) = |F)(x*; d)'F(x*; d)|| - ||d||/||x*| is called the
condition number of F with respect to the data vector d.

A problem is ill-conditioned if cond(F; d) > 1.

Let us now suppose that F(x; d) =0 is solved by an iterative procedure
®(x,, F), where ® can use several F{7, the jth Fréchet-derivative of F at x; (if j = 1
or 2, a single or double prime is used instead of the superscript j). If {x;} is the

sequence of successive approximations of x*, we can at best expect x; to be the
. ~
representation of a computed value for x*,

I, — X*|| < Kpllx*|.
So
Ix, = x*|| < [Ix; = **|| + [|x* = x*|| < Kp||x*|| + Cp cond(F; d) - [|x*|| + O(p?)
< Kp(lIx* = x*|| + |lx*]]) + Cp cond(F; d) - [|x*|| + O(p?)
<[Kp + Cp cond(F; d)] - ||x*|| + O(p?).

Definition 1.2. An iteration ® is called numerically stable if
lim ||x, — x*|| < p - [|lx*]| - (C cond(F; d) + K) + O(p?),
1— 00
where the constants C and K depend on x*, d and F.

[n practice we often want to find an approximation x; such that ||x; — x*|| <e-
|x*||. This is possible if the problem is sufficiently well-conditioned, i.e.,
» cond(F; d) = O(e). In floating-point arithmetic we have

X1 = O(x;, F) + &, where § = fl(P(x;, F)) — O(x,, F).
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THEOREM 1.1. A convergent iterative procedure ®(x;, F), i.e.
lim [|®(x;, F) — x*|| =0,
11— 00

is numerically stable if lim,_, ,||&]| < p||x*||(C cond(F; d) + K) + O(p?).

Proof. We simply verify the definition.

lim [lx; = x*|| < lim [||9(x,_p, F) = x*[| + -]

= lim [I§_,|l < pllx*[[(C cond(F; d) + K) + O(p?).
1—00

2. Abstract Padé Approximants (APA) and Abstract Rational Approximants (ARA)
for the Solution of a System of Nonlinear Equations. Let x; be the ith approximant
of the root x* in the iterative process, y, = F(x;) and the Newton-correction
a; = —F/"'F,. Using the Inversion Theorem [1, p. 381] we can see that

(3) x*=x; + a —sF/'Fa? + 0(a}),

where F;”a? is the bilinear operator F;” evaluated on (a;, ;). The Newton-iteration
results from approximating the series in (3) by its first two terms, i.e., the (1, 0)-APA
[2]).

In [7) Wozniakowski proves numerical stability of the Newton-iteration under a
natural assumption on the computed evaluation of F.

THEOREM 2.1. If
@) fI(F(x;; d)) = (I + AF)F(x; + Ax;; d + Ad)) = F(x;) + S8F,, with
8F, = AF,F(x) + F/(x)Ax, + Fj(x)Ad, + O(p?),
(b) fI(F'(x;; d)) = F'(x;) + 8F/, with 8F = O(p),
(c) the computed correction fl(a;) is the exact solution of a perturbed linear system
(F'(x;) + 8F/ + E)fl(a;) = -F(x;,) — 8F, with E; = O(p),

then the Newton-iteration is numerically stable.

Proof. In [7].
Another way to approximate x* is to use the (1, 1)-ARA [2] for the power series
(3), i.e.

a?

— 1
(4) Xi+1 X; + q + %F,"'F}”af ’
where multiplication and division of the vectors in R? in the numerator and
denominator of (4) are componentwise. For ¢ = 1 the iteration (4) is the well-
known Halley-iteration. We will also use the name Halley-iteration for the case
q > 1. We will now prove numerical stability of this iteration under assumptions
similar to the assumptions for the Newton-iteration. We will also assume that the
divisions in (4) are such that

s (——‘—-)jO(ua,-nf‘*p“’) - 0(6").

\ =l 2
a, +3F " F'q
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Condition (5) takes care of the fact that the denominator of the correction-term in
(4) does not become too small in comparison with O(||g;|/~*p*).
The assumption of (5) is a natural generalization of the following relations:
. a;
fOI'q = l, lim T oion 2 =1,
imw g, + 3 F/F' g
4
(casej =1,k =0,/ = 0) with D € Ry,

in a convergent process (4): lim ||x* — x,|| = 0, and thus
1—00

<1+ D

(5a) andsodL END> Vi > L:

lim ¢ =0, i.e.IM END Vi > M:a, = O(p),

i—00
and so Vi > M: a’ = O(||q;||p); also
2
) a; .
lim ——I’I—z =0, i.e.
i g+ FTF g,
a?

AN END Vi>N:
(5b)
a;
1

= ———————O0(||a]lp
T Trr g Ollale)

O(p)

and so Vi > max(N, M):

(casej =1,k =0,1=1).

THEOREM 2.2. If

@) fI(F(x;; d)) = (I + AF)F(x; + Ax;; d + Ad) = F(x;) + 6F, with
8F, = AFF(x)) + F/(x)Ax; + F;(x)Ad, + O(p?),

®) fI(F'(x;; d)) = F'(x;) + 8F; with §F/ = O(p),
© I(F"(x;; d)) = F"(x;) + 8F" with 8F" = O(p),
(d) the computed correction fl(a;) is the exact solution of a perturbed linear system
(F'(x;) + 8F/ + E;\)fl(a;) = ~F(x;)) — 8F, with E;; = O(p),

(e) analogously,

(F'(x) + 8F + E,)(b) = (F"(x) + 8F)fl(a)’

with E,, = O(p) and b, = F/"'F/"a},
and (5) holds, then the iteration (4) is numerically stable.
Proof. Let F'(x;) + 8F/ + E;, = F'(x)({ + H,)), where
H,, = F'(x) '(8F + E,} = O(p)

because of (b) and (d). So for small p,
(1 + Hi,l)_l =I-H,+ O(Pz)'
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Thus
(6) fi(a) = (1 — H,,)F/"'(~F, = 8F).
Analogously

fi(b) = (1 = H)F/"\(F/ + 8F/)fl(a)* with H,; = O(p).
Now

(F/ + 8F))l(a)* = (F; + 8F,)[(I - H,,)F/"\(-F, = 8F)]’

= (" + 8F/)a? + 2F; + 8F')(F,"'F, F,"'8F, = H,,F,"'F;) + 0(p?)
= (F" + 8F/)a} — 2F/(a, F/'8F, — H,,F,"'F) + 0(p?).

Thus
fi(b) = F/\(F + 8F/)a} — 2F/"'F/(a, F/"'8F, — H,,F/"'F,)

~ H,F'F a2 + 0(p?).
A computed approximation x, , , satisfies
fi(a,)’
where 81, and 81, , are diagonal matrices and 8/,, = O(p) and 8I,, = O(p). So

Xor = (1 + 80,) | x; + (I + 8I,,)

I

al — 2a,- (F/'5F, + Hi,lai) + 0(p?)
q; +%bi — 8a; + 0(p?)

Xig1 = (1 + 61,',!) x; + (1 + 81.',2)

where
8a, = F/"\8F, + H,,a, — 3 F/"\8F/ a?

+ 3 HoF'F a? + F7'F/(a, F/7'8F, — H,,F"'F).
Using (6), we find

fi(a) — a; + H;,a, — H, F/"'SF, = —F/"'§F,
and thus, for positive constants D, and D,,

| F{'8F,)| < Daplla;|| since |Ifl(a;) — 4| < Dpllaj|
and
WENE - NEL < NE - IE - e

Thus

X1 =+ 81.',1) x; +

a; +3b; — 8a; + O(p?)

a? — 2a(F/OF, + H,,a) + 8l ,a% + 0(p2:|a,~n2)]

where 81, ,a7 is the linear operator 81, , evaluated in @} (componentwise square of
the vector g;). So

x; +

xi+l=(1+81i,l) 2+
; T30

a’ — 2ai(Fi’_|6F;' + Hi,lai) + 81, ,a? + O(p?||a]?) ]
. c‘ N



176 ANNIE A. M. CUYT

with

¢ =1 + 'b
since 8a, = O(pllaill); in ¢; we have used the notation 1 for the unit vector

a ..., n.

Using (5), we conclude

2
(8a; + 0(p?) + ( ) O(llal> *p**% k = 0, 1,2)
a

1
i +%bl

2
1
o(lla > *p**% k=0, 1, 2) = 0(p?).
(25 ) otar-s ) = 0"

For§ = x;,, — ®(x;, F), we have

§ = 81i,lxi + (; = 1)
i 2Y%
| Z2a(FSF, + H,a) + 81,50 + O(p’l|a’)
a; +%b,- g
a2 )
+ 61, ¢, + O
il + ;b (p )
So
2
§=0I,x + ( ; ) O(pllal p*lal?) + o(p*la;l?)
; + Eb' b
+ (-2a,F/7'8F; + O(pllal|% p?lla]?)) - (1 + O(p))
a; + —b
+0(p?).
Thus
1§11 < kipllx]l + kyplla;ll + a F}/_lal:;’ + O(Pz)’
i 2V
and since
-2a,
" F/7I8F, = F/"(AF,F(x;) + F/Ax; + F;Ad, + O(p?
a,-+-;-b, ! a;, +3b; ( (x) 4 G ))
L O(pllal) Flx) — —2—a
= a x;) — x;
%b Pl q +%b,
__2a F/7'FiAd, + o(p?lail),
a, + 2b,. P +;b :

we find that
lim [15]] < pllx*|(K + C cond(F; ) + O(p?)

for lim,; =0 = lim,_ F(x;) in a convergent process and gAx; = O(p| g

i—00 l

and a:F;’—IFdAdi = o(p”alll)
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3. Numerical Example. Consider the following operator:

e——x+y _

d
F:R? 5 R%: (x,y)—)( dl) withd, > 0and d, > 0.
2

e—x_)’ —
The operator F has a simple root x* = (-3 In(d,d,), 3 In(d,/d,)). Clearly
d = (d, d,)

is the data vector. Now
[(l + )X TAXYFANA+E) _ (4 4 A’,d)](l + K)
[(1 + )= 4x=r=800+0) — (4, + Ad)[(1 + &y) |
where fl(x) = x + A'x, fl(y) = y + A%y, fl(d)) = d, + A\d, fl(d,) = dy, + Ayd, 8, is
caused by -fl(x) + fl(y), 8, is caused by -fl(x) — fI(y), g are caused by the
exponential evaluations (i = 1,2), «;, are caused by the subtraction of fl(d)
(i=102).

One can rewrite fl(F(x, y; d)) = (I + AF)F(x + Ax, y + Ay; d + Ad) with

Ax = x0, + Ax(1 +6,), Ay =8, + Ay(1 + 6,), Ad= (Ad, Ayd),

fI(F(x,y; d)) =

pg = Nid=eidy
1 + ¢
Ad = Alzd — 82d2 d2 + Alzd(e(x+A’x+y+A’y)(02—0,) _ l)
2 1 +¢ 1 +e, ’
AF (T +e)(1+x)—1 0
) 0 (1+ e)(1 + et asmrran@=o) _ |

The inverse of the Jacobian matrix in the root x* is

-d, -d
1 ( ) 1) and F‘;:(—l 0)‘

2(d,-dy)\ 4, -4, 0 -1
The condition number of F with respect to the data vector d is
oy, lIGdy, dy)||
Fl(x*; d)"|| - —2 220
” x( ) ” ”x*”

2

Using the Schur-norm ||4]| = a

;; of a matrix 4 = (a;) and the /,-norm

iJ
llall =\/§5 ; @} of a vector a = (a,), the condition number is
dl + d}
V2d,-dy- |x*|
Putting d, = d = d,, the root x* = (~Ind, 0) and the condition number is
V2 /|In d|. The problem is extremely well-conditioned if cond(F; 4) < 1, i.e.,
d €]-o0, e U2, +oo.

The problem is very ill-conditioned if d = e* with & very small. We will now check
some of the conditions of Theorem 2.2. We already know fI(F(x,y; d)) =

(I + AF)F(x + Ax,y + Ay; d + Ad).
Now

(P (eya) =a( 00 €77

—e*7Y —e x7r
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where

f](e‘x*'y) (1 + el)e(_x_A,x+y+A»y)(|+0.) — (l + el)e—x+ye—Ax+A)'
e"x”[l +e 4+ (14 g)(e+y — 1)]’
fl(e™™”) = (I + gy)e*~4x7r =AU+

= (l + ez)e—x—ye—A.x—Aye(x+A’x+y+A’y)(0,—01)

_ e_,‘_y[l 46y 4 (1 + g))(e 05~ Delx+8x+y +8))0,-8) _ 1)]‘
So fI(F'(x,y; d)) = F'(x,y; d) + 6F'(x, y; d) with
OF' (x,y; d)
e+ (1 +¢e)(e™*™ —1) 0
0 gy + (1 + &y)(e 0~ Dol +Mx+y+8)0-8) _ )
F'(x,y; d) = O(p).

We can write down an analogous formula for F”(x, y; d).

K x, ve ' cond(F;e'® )
o -0.1009000000000000 (01) 0.3597855161523896 (-18) 16 %3

1 -0. 1090000990000000 (00) -0.2376055789464463 (-17) 16 102

2 -0.100000090000001 (-01) -0.6397150159689099(-17) 15 102v2
3 -0.0999999999999997 (-02) 0.5077502606368951(-17) 15 103v2
4 -0.0999999999999844 (-03) 0.3913464269882279(~17) 13 104vZ
s -0.0999999999997470(-04) -0.3905797959965137(-17) 12 105VZ
6 -0.0999999999986935 (-05) 0.5633677343553680(-17) 11 106VZ
7 -0.1000000000174599 (-06) -0.1058449777227516 (-16) 10 107VZ
8 -0.1000000000015281 (-07) 0.4124494865312562(-17) 11 108v2
9 -0.1000000007452433 (-08) -0.2449359520991520(-17) 9 109VZ
10 -0.0999999914314586 {-09) 0.4265833288825851 (-17) 8 1010v7
11 -0.1000000261210709 (-10) -0.6446772724219823(-17) 7 1011v2
12 -0.0999980430668081 (-11) 0.3302303528672576(-17) S 10'2v2
13 -0.0999761308551817(-12) 0.1322187990417560(-16) 4 1013v2
14 -0.1000372750236664 (-13) -0.1182870095748150(-16) 4 10!4v2
15 -0.0963108239652912 (-14) 0.1398012990192197(-17) 2 10'5vZ
16 -0.0868560967896870 (-15) 0.3349523961106902(-17) | 1016vZ

We remark that the algorithm even behaves considerably well for a condition number of the
order of 10° or 10

The two linear systems of equations are well-conditioned since the condition

number of the linear systems in x* = lim;_, x; is

1F(x*s d) ) - 1 Fo(x*; d)]| = 2.
One can prove that the use of Gaussian elimination with row pivoting for this
example satisfies the conditions (d) and (e) of Theorem 2.2. So we can expect to get
a reasonable approximation of the solution of F(x, y; d) = 0 using the numerically
stable iterative method (4); the numerical results illustrate this. Let us at the same
time follow the loss of significant digits in the root x* as the problem becomes
worse-conditioned. The calculations are performed in double precision (¢ = 56) on
the PDP 11/45 of the University of Antwerp. We will solve the nonlinear system
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F(x,y;d)=0ford=¢e'"" k =0,...,16. The root x* = (—107*, 0). For each 4
we give the 6th iteration-step (x4, y¢) in the procedure (4) starting from (xg, yo) =
(2, 2), the number / of significant digits in x,, and the condition number
cond(F; e'°-k). It is also important to know that the iterative procedure stops at the
6th iteration-step, except for k = 7, 13, and 14 where, respectively, / = 11, 5, and 3
in the last iteration-step (x5, y;). We have used the stop-criterion

max(| X,y = Xl [Yier =0l < 107" max(|x; . s |Visil):
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